
会员
PyTorch 2.0深度学习从零开始学
更新时间:2024-12-27 21:22:20 最新章节:15.3 本章小结
书籍简介
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的WordEmbedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。
品牌:清华大学
上架时间:2023-08-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
王晓华
最新上架
- 会员本书从技术角度深度解析大模型的原理,从大模型的基础概念及领域发展现状入手,概述大模型的理论基础,介绍OpenAIGPT、清华大学GLM、MetaLlama等主流大模型的技术原理,并从大模型参数高效微调、大模型指令微调、大模型训练优化和大模型推理优化等多角度解析大模型背后的技术,带领读者全方位掌握大模型的原理和实践方法。本书最后介绍私有大模型的构建,手把手指导读者做技术选型并搭建自己的私有大模型计算机12.2万字
- 会员本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第计算机16.4万字
- 会员本书深入探讨了RAG技术体系及其应用,内容涉及从基础概念到高级应用的各个方面。首先,解构了大模型应用的基本模式与局限性,并引入RAG作为增强生成能力的一种方法,讲解了RAG的核心概念、组成结构及应用场景,还涵盖了RAG的基础、高级、模块化和智能体形式的技术体系。其次,以LlamaIndex为工具,展示了如何实现RAG,包括提示词设计、文档与索引创建、上下文检索及查询引擎构建等具体步骤。最后,介绍了计算机10万字
- 会员本书是一本深入探讨AI在论文写作中应用的指南。本书通过九章内容,全面介绍如何在论文选题、前言写作、大纲写作、正文写作、数据分析、摘要写作、结语撰写、文稿翻译与润色、答辩PPT制作、查重投稿等环节借助AI提高效率和质量。本书不仅讨论了AI的使用伦理,还针对论文写作的具体问题,提供了提示词示例(已全部收录到秋叶AI智能鼠标平台),为论文写作提供了广阔的视角和新的方法。本书可作为缺少学术论文写作经验的大计算机7.3万字
- 会员DeepSeek是一种生成式人工智能(AI)大模型,擅长处理复杂任务,具有训练效率高、成本低、性能强、开源等优势,吸引了全世界的关注。本书是写给DeepSeek初学者的快速上手实践指南。本书通过项目实例进行讲解,手把手地教读者如何使用DeepSeek。本书共6章,首先对DeepSeek进行概述,包括其成长路线、优势、技术原理、应用场景、应用方式等;其次讲解如何为DeepSeek写提示词,包括结构化计算机3.6万字
- 会员本书旨在提供一份全面、易懂的DeepSeek大模型实战内容,通过深入浅出的讲解,帮助读者快速掌握DeepSeek的核心技术和应用场景。本书不仅涵盖了DeepSeek的技术原理、架构设计和训练方法,还详细介绍了如何通过API调用、本地部署和云服务等方式将DeepSeek集成到实践项目中。此外,本书通过大量实例和案例分析,展示了DeepSeek在不同领域的应用实践,帮助读者更好地理解和应用这一强大的工计算机9万字